

Course Outcome हौशलम सर्वसाधन् **AUTONOMOUS** Session 2024-25 (Odd & Even) **Department of Electrical & Electronics** Engineering

Please Note (Reference: OBE Guidelines wef. Session 2021 – 22)

The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.

The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 3 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.

INSTITUTIONAL RANKING FRAMEWORK

NIRF-2023 Engineering Rank Band (151-200) Pharmacy Rank - 88 Innovation Rank Band (51-100)

AUTONOMOUS

Please Note (Reference: OBE Guidelines wef. Session 2021 – 22)

The statement of a CO must be formed considering a proper structure having mandatory and optional parts. The mandatory parts are Action & Knowledge and optional parts are Condition and Criteria.

The theory courses/ project having credits 3 to 6 should have 5 number of COs. The laboratory course/ mini project/ seminar/ industrial training having credits less than 3 should have 3 number of COs. The Project having 7 to 12 credits should have 6 to 10 number of COs.

	1 st Semester									
S No.	Subject Code	Subject Name	Page No.							
1	MAS101L	Calculus for Engineers	1							
2	PH101L	Semiconductor Physics and Devices	2							
3	IT101B	Programming for Problem Solving	3							
4	EE102L	Explorations in Electrical Engineering	4							
5	EE101B	IoT and Embedded Systems	5							
6	ID103B	Design Thinking	6							
7	PH101P	Semiconductor Physics and Devices Lab	7							
8	IT101P	Programming for Problem Solving Lab	8							
9	EE101P	IoT and Embedded Systems Lab	9							
10	EE102P	Explorations in Electrical Engineering Lab	10							
11	HS101B	Communications Skills	11							
12	HS1XXB	Foreign Language (Japanese/German/French/Spanish)	12							

	2 nd Semester									
S No.	No. Subject Code Subject Name									
1	MA103L	Linear Algebra for Engineers	13							
2	CH101L	Environmental Chemistry	14							
3	CS201B	Data Structure	15							
4	EE103L	Emerging Technologies for Engineers	16							
5	EE104L	Digital Logic Design	17							
6	ME101B	Design & Realization	18							
7	EE103P	Emerging Technologies for Engineers Lab	19							
8	ME101P	Design & Realization Lab	20							
9	AI102P	Python for Engineers	21							
10	ID104B	Innovation and Entrepreneurship	22							

đ

Dean (EEE)

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Calculus for Engineers	Course Code: MA101L	Faculty: Dr. Ritu Gupta

Taggi	ng COs with BLs & KCs		
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)
After o	completion of the course, the student will be able to	Level (BL)	
CO1	Apply the concept of partial differentiation in application of homogeneous and composite functions.	Apply	Procedural
CO2	Apply knowledge of partial differentiation in extrema, series expansion of functions and Jacobians	Apply	Procedural
CO3	Construct the transformations using the concept of analyticity and harmonicity of complex functions	Apply	Procedural
CO4	Employ the concept of multiple integration to find the area of bounded region	Apply	Procedural
CO5	Apply the concept of vector differentials to study the properties of point functions	Apply	Procedural

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO-2
CO1	2	2	2	-	-	-	-	1	-	-	-	2	-	-
CO2	2	2	2	-	-	-	-	1	-	-	-	2	-	-
CO3	3	2	2	-	-	-	-	1	-	-	-	1	-	-
CO4	3	2	2	-	-	-	-	1	-	-	-	1	-	-
CO5	3	2	2	-	-	-	-	1	-	-	-	1	-	-
PO Target	2.6	2	2	-	-	-	-	1	-	-	-	1.4	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1st Odd Semester
Course Name: Semiconductor Physics and Devices	Course Code: PH101L	Faculty: Dr. Vipin Kumar

Tagging	g COs with BLs & KCs		
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category
After co	mpletion of the course, the student will be able to	Level (BL)	(KC)
CO1	Illustrate the basic concept of crystalline materials and their appropriate use	Apply	Procedural
CO2	Apply the fundamentals of basic semiconductor Physics on transistor and MOSFET	Apply	Procedural
CO3	Apply the concepts of semiconductor Physics in aspect of solar cell and Zener diode	Apply	Procedural
CO4	Implementing of semiconductor Physics to study various characteristics of optoelectronic devices	Apply	Procedural
CO5	Apply the concept of Quantum Physics to study various phenomenon	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	1	-	-	-	2	2	-	-	2	-	1	-	-
CO2	3	2	-	-	-	2	2	-	-	2	-	1	-	-
CO3	3	2	-	-	-	2	2	-	-	2	-	1	-	-
CO4	3	2	-	-	-	2	2	-	-	2	-	1	-	-
CO5	2	1	-	-	-	-	-	-	-	1	-	1	-	-
PO Target	2.6	1.6	_	-	-	2	2	-	-	1.8	-	1	-	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Programming for Problem	Course Code: IT101B	Faculty: Prof. Shivam
Solving		

Taggi	ng COs with BLs & KCs			
CO No.	Statement of Course Outcome	Bloom's Cognitive Process Level	Knowledge Category	
After c	completion of the course, the student will be able to	(BL)	(KC)	
CO1	Apply programming constructs of C language to solve real-world problems	Apply	Conceptual	
CO2	Use the concepts of looping, branching, and decision-making statements for a given problem	Apply	Procedural	
CO3	Develop Solutions to problems using modular programming constructs such as functions and recursion	Apply	Conceptual	
CO4	Demonstrate the ability to write C programs using pointers, strings structures and unions	Apply	Conceptual	
CO5	Design a solution to problems using the concepts of pointers and files handling	Apply	Conceptual	

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	3	3	-	-	2	-	-	1	-	-	-	2	-	2
CO2	3	3	-	2	2	-	-	1	-	-	-	2	-	2
CO3	3	3	-	2	2	-	-	1	-	-	-	2	-	2
CO4	3	3	2	2	2	-	-	1	-	-	-	2	-	2
CO5	3	3	2	2	2	-	-	1	-	-	-	2	-	2
PO Target	3	3	2	2	2	-	-	1	-	-	-	2	-	2

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Explorations in Electrical Engineering	Course Code: EE102L	Faculty: Dr. Rajeev Kumar

Taggi CO No.	ng COs with BLs & KCs Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)
After of	completion of the course, the student will be able to	Level (BL)	(110)
CO1	Understand the concepts of electric circuit solutions with DC supply using mesh-nodal analysis and Network Theorems.	Understand	Conceptual
CO2	Apply the concepts of electrical circuits with AC supply in single and three phase system	Apply	Procedural
CO3	Analyze the equivalent circuit and performance of single-phase AC transformer	Analyze	Procedural
CO4	Illustrate the working principle of induction motors, synchronous machines and DC machines.	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO-2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	2	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	2	-	-
PO Target	2.75	2.5	2	2	-	-	-	-	-	-	-	2	-	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: IoT and Embedded Systems Lab	Course Code: EE101B	Faculty: Prof. Salim

Tagging COs with BLs & KCs											
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)								
After c	completion of the course, the student will be able to	Level (BL)	(iiic)								
CO1	Understand the basic concepts of sensors and transducers.	Understand	Conceptual								
CO2	Understand basics of embedded system and different IoT boards.	Understand	Conceptual								
CO3	Apply basic operations and programming techniques of IoT devices.	Apply	Procedural								
CO4	Apply smart technology knowledge through case studies.	Apply	Procedural								
CO5	Understand the basic concepts of sensors and transducers.	Understand	Conceptual								

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	-	-	_	2	2	2	-	-	-	-	2	-	2
CO2	2	-	2	-	2	2	2	-	2	-	-	2	-	2
CO3	3	-	3	2	3	2	2	-	2	-	-	2	-	3
CO4	3	2	3	3	3	2	2	-	2	-	-	2	-	3
PO Target	2.5	2	2.66	2.5	2.5	2	2	-	2	-	-	2	-	2.5

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester			
Course Name: Design Thinking	Course Code: ID103B	Faculty: Dr. Natwar Singh Rathore			

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Understand the basic requirements of a good design.	Understand	Conceptual
CO2	Empathize and ideate the solutions to problems in his environment	Understand	Conceptual
CO3	Prototype and test the developed solutions.	Apply	Procedural
CO4	Apply the principles of design thinking on developing innovative solutions to the real-world problems.	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	1	3	3	2	2	2	2	-	2	2	-	2	3	-
CO2	1	3	3	2	2	2	2	-	2	2	-	2	3	_
CO3	1	3	3	2	2	2	-	-	2	2	-	2	3	_
CO4	1	3	3	2	2	2	2	-	2	2	-	2	3	-
PO Target	1	3	3	2	2	2	2	-	2	2	-	2	3	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Semiconductor Physics and	Course Code: PH101P	Faculty: Dr. Soniya Juneja
Devices Lab		

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)	
CO1	Illustrate the basic concept of crystalline materials and their appropriate use.	Understand	Conceptual	
CO2	Apply the fundamentals of basic semiconductor Physics on transistor and MOSFET.	Apply	Procedural	
CO3	Apply the concepts of semiconductor Physics in aspect of solar cell and Zener diode.	Apply	Procedural	
CO4	Implementing of semiconductor Physics to study various characteristics of optoelectronic devices.	Apply	Conceptual	
CO5	Apply the concept of Quantum Physics to study various phenomenon.	Apply	Conceptual	

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	РО- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	1	-	-	-	2	2	-	-	2	-	1	-	2
CO2	3	2	-	-	-	2	2	-	-	2	-	1	-	3
CO3	3	2	-	-	-	2	2	-	-	2	-	1	-	3
CO4	3	2	-	-	-	2	2	-	-	2	-	1	-	3
CO5	2	1	-	-	-	-	-	-	-	1	-	1	-	2
PO Target	2.6	1.6	-	-	-	2	2	-	-	1.8	-	1	-	2.6

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester			
Course Name: Programming for Problem	Course Code: IT101P	Faculty: Prof. Umang Rastogi			
Solving Lab					

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Apply programming constructs of C language to solve real-world problems.	Apply	Procedural
CO2	Use the concepts of looping, branching, and decision-making statements for a given problem.	Apply	Conceptual
CO3	Develop Solutions to problems using modular programming constructs such as functions and recursion.	Apply	Procedural
CO4	Demonstrate the ability to write C programs using pointers, strings structures and unions.	Understand	Conceptual
CO5	Design a solution to problems using the concepts of pointers and files handling.	Apply	Procedural

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	РО- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	3	3	-	-	2	-	-	1	I	-	-	2	-	2
CO2	3	3	-	2	2	-	-	1	I	-	-	2	-	2
CO3	3	3	-	2	2	-	-	1	Ι	-	-	2	-	2
CO4	3	3	2	2	2	-	-	1	-	-	-	2	-	2
CO5	3	3	2	2	2	-	-	1	-	-	-	2	-	2
PO Target	3	3	2	2	2	-	-	1	-	-	-	2	-	2

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: IoT and Embedded	Course Code: EE101P	Faculty: Dr. Ankur Maheshwari
Systems Lab		

Taggi	ng COs with BLs & KCs		
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category
After	completion of the course, the student will be able to	Level (BL)	(KC)
CO1	Understand the basic concepts of sensors and transducers.	Understand	Conceptual
CO2	Understand basics of embedded system and different IoT boards.	Understand	Conceptual
CO3	Apply basic operations and programming techniques of IoT devices.	Apply	Procedural
CO4	Apply smart technology knowledge through case studies.	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	-	-	-	2	2	2	-	Ι	-	-	2	-	2
CO2	2	-	2	-	2	2	2	-	2	-	-	2	-	2
CO3	3	-	3	2	3	2	2	-	2	-	-	2	-	3
CO4	3	2	3	3	3	2	2	-	2	-	-	2	-	3
PO Target	2.5	2	2.66	2.5	2.5	2	2	-	2	-	-	2	-	2.5

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Explorations in Electrical	Course Code: EE102P	Faculty: Dr. Rajeev Kumar
Engineering Lab		

CO No.	Statement of Course Outcome	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Understand the concepts of electric circuit solutions with DC supply using mesh-nodal analysis and Network Theorems.	Understand	Conceptual
CO2	Apply the concepts of electrical circuits with AC supply in single and three phase system	Apply	Procedural
CO3	Analyze the equivalent circuit and performance of single-phase AC transformer	Analyze	Procedural
CO4	Illustrate the working principle of induction motors, synchronous machines and DC machines.	Understand	Conceptual

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	3	-	-
CO4	3	3	2	2	_	_	-	-	_	-	_	3	_	-
PO Target	2.75	2.5	2	2	-	-	-	-	-	-	-	2.5	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Communications Skills	Course Code: HS101B	Faculty: Dr. Soniya Verma
Tagging COs with BLs & KCs		
CO		Bloom's

CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)
After	completion of the course, the student will be able to	Level (BL)	(NC)
CO1	Understand the essentials of communicating in a professional setting.	Understand	Factual
CO2	Comprehend correct English usage and formal style of Listening and speaking.	Apply	Procedural
CO3	Apply the usage of verbal and non-verbal cues in presentation and day-to-day communication.	Analyze	Procedural
CO4	Develop Communication skills that meet the nature and objectives of the workplace.	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO2	-	_	-	-	_	_	-	-	-	3	-	1	-	-
CO3	-	-	-	Ι	-	Ι	I	-	-	3	Ι	1	I	-
CO4	-	-	-	-	-	-	-	-	-	3	-	1	-	-
PO Target	-	-	-	-	-	_	-	-	_	3		1	-	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 1 st Odd Semester
Course Name: Foreign Language (Japanese/German/French/Spanish)	Course Code: HS1XXB	Faculty: Prof. Tanu Diwakar
Tagging COs with BLs & KCs		

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Understand how language and culture interact in global context and impact intercultural communication	Understand	Factual
CO2	Introduce themselves in the respective language and understand the syllables and number	Apply	Procedural
CO3	Apply their learning in basic conversations and understand the social etiquette of professional world	Apply	Procedural
CO4	Utilize the skills of listening, speaking and non-verbal communication in the target language	Apply	Procedural

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	-	-	-	-	-	-	-	-	1	3	-	1	-	-
CO2	-	-	-	-	-	-	-	-	1	3	-	1	-	-
CO3	-	-	-	-	-	-	-	-	1	3	-	1	-	-
CO4	-	-	-	-	-	-	-	-	1	3	-	1	-	-
PO Target	-	-	-	-	-	_	-	-	1	3		1	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Linear Algebra for	Course Code: MA103L	Faculty: Prof. Umang Rastogi
Engineers		

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Apply elementary transformation to solve system of Linear equations.	Apply	Procedural
CO2	Employ the concept of matrix factorization in data decomposition.	Apply	Conceptual
CO3	Understand the concept of vector space and subspaces.	Apply	Procedural
CO4	Explore the concept of linear transformations to apply in engineering applications.	Apply	Procedural
CO5	Explore the concept of inner products of vectors to decide orthogonality and orthonormality	Apply	Procedural

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	РО- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO-2
CO1	3	3	3	-	-	-	-	-	-	-	-	2	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	1	-	-
CO3	2	2	2	-	-	-	-	-	-	-	-	1	-	-
CO4	2	2	2	-	-	-	-	-	-	-	-	1	-	-
CO5	2	2	2	-	-	-	-	-	-	-	-	1	-	-
PO Target	2.2	2.2	2.4	-	-	-	-	-	-	-	-	1.2	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Data Structure	Course Code: CS201B	Faculty: Prof. Anshuman Kaliya

Tagging COs with BLs & KCs

23 land (151-200) nk - 88 and (51-100)

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Use the concept of the array in searching and sorting algorithms.	Apply	Procedural
CO2	Illustrate the concept of Dynamic Memory Allocation for operations on linked list.	Apply	Procedural
CO3	Analyze different recursion techniques using stack.	Analyze	Procedural
CO4	Implement queue and its applications using basic data structure.	Apply	Procedural
CO5	Apply the knowledge of tree and binary search tree structures for problem solving	Apply	Procedural

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	РО- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	3	1	1	-	1	1	-	-	-	-	-	2	2	-
CO2	3	2	2	1	1	1	-	-	-	-	-	2	2	-
CO3	3	2	2	1	1	1	-	-	-	-	-	2	2	-
CO4	3	2	2	1	1	1	-	-	-	-	-	2	2	-
CO5	3	2	1	-	1	1	-	-	-	-	-	2	2	-
PO Target	3	1.8	1.6	1	1	1	-	_	-	-	-	2	2	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Environmental Chemistry	Course Code: CH101L	Faculty: Dr. Anamika Singh

Tagging COs with BLs & KCs CO Bloom's **Statement of Course** Knowledge Cognitive No. Outcome Category Process (KC) After completion of the course, the student will be able to Level (BL) Understand the knowledge of advanced materials for interdisciplinary **CO1** Understand Conceptual applications Employ the concept of electrochemistry for portable energy devices to provide viable solutions for industrial problems **CO2** Procedural Apply Understand the insight of environment pollution and its mitigation for Understand **CO3** Conceptual sustainable development Understand the environment related issues, their impacts and provide the Understand Conceptual **CO4** sustainable solutions

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	2	1	1	-	1	1	-	-	-	-	1	-	-
CO2	2	2	1	2	-	1	1	-	-	-	-	1	-	-
CO3	2	2	1	1	-	2	2	-	-	-	-	2	-	-
CO4	2	2	1	1	-	2	2	-	-	-	-	2	-	-
PO Target	2	2	1	1.25	-	1.5	1.5	-	-	-	_	1.5	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Emerging Technologies for	Course Code: EE103L	Faculty: Prof. Salim
Engineers		

CO No.	Statement of Course Outcome completion of the course, the student will be able to	Bloom's Cognitive Process Level (BL)	Knowledge Category (KC)
CO1	Understand the concepts of Industry 1.0 to Industry 5.0 & 5G technology.	Understand	Conceptual
CO2	Apply the MATLAB for Engineering Applications	Apply	Procedural
CO3	Understand the concepts of cloud computing	Understand	Conceptual
CO4	Understand the concepts of blockchain	Understand	Conceptual

Маррії	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	3	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	3	-	-
PO Target	2.75	2.5	2.25	2	-	-	-	-	-	-	-	2.5	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Digital Logic Design	Course Code: EE104L	Faculty: Prof. Kapil Gandhi

Tagg	ing COs with BLs & KCs			
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category	
After	completion of the course, the student will be able to	Level (BL)	(KC)	
CO1	Understand various types of number systems and their conversions.	Understand	Conceptual	
CO2	Simplify the Boolean expressions and apply the Boolean theorems through logical gates.	Apply	Procedural	
CO3	Design and implement variety of logical devices using combinational circuits concepts.	Apply	Procedural	
CO4	Analyze sequential circuits like Registers and Counters using flip-flops.	Analyze	Conceptual	

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	3	2	-
CO4	3	3	2	2	-	-	-	-	-	-	-	3	2	-
PO Target	2.75	2.5	2	2	-	-	-	-	-	-	-	2.5	2	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Design & Realization	Course Code: ME101B	Faculty: Dr. Pratibha Kumari

Tagging COs with BLs & KCs								
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)					
After	completion of the course, the student will be able to	Level (BL)						
CO1	Understand the concept of Computer-Aided Design (CAD).	Understand	Conceptual					
CO2	Apply CAD software to create basic 3D models.	Apply	Procedural					
CO3	Apply CAD and Additive Manufacturing software for 3D printing.	Apply	Procedural					
CO4	Understand the fundamentals of Computer-Aided Manufacturing and CNC machining	Understand	Conceptual					

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	-	-	I	I	2	-	-	-	I	2	I	3	_	-
CO2	2	-	2	I	3	-	-	-	I	2	I	3	2	-
CO3	2	-	2	-	3	-	-	-	2	2	-	3	2	-
CO4	-	-	-	-	2	-	-	-	2	2	-	3	-	-
PO Target	2	-	2	-	2.5	-	-	-	2	2	-	3	2	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Emerging Technologies for Engineers Lab	Course Code: EE103P	Faculty: Prof. Salim

Tagg	Tagging COs with BLs & KCs								
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category (KC)						
After	completion of the course, the student will be able to	Level (BL)							
CO1	Understand the concepts of Industry 1.0 to Industry 5.0 & 5G technology.	Understand	Conceptual						
CO2	Apply the MATLAB for Engineering Applications	Apply	Procedural						
CO3	Understand the concepts of cloud computing	Understand	Conceptual						
CO4	Understand the concepts of blockchain	Understand	Conceptual						

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	3	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	3	-	-
PO Target	2.75	2.5	2.25	2	-	-	-	-	-	-	-	2.5	-	-

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Design & Realization Lab	Course Code: ME101P	Faculty: Prof. Ashok Kumar

Tagg	ing COs with BLs & KCs			
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category	
After	completion of the course, the student will be able to	Level (BL)	(KC)	
CO1	Create 2D and 3D models using Computer Aided Design software.	Apply	Procedural	
CO2	Apply 3D modelling techniques and STL file preparation for additive manufacturing.	Apply	Procedural	
CO3	Create a model using 3D printer.	Apply	Procedural	
CO4	Develop engineering components using CNC/VMC machine.	Apply	Procedural	

Mappir	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	2	I	2	-	2	-	I	-	2	2	1	3	-	-
CO2	2	-	2	-	2	-	-	-	2	2	1	3	-	-
CO3	1	-	1	-	2	-	-	-	2	2	1	3	-	-
CO4	2	-	2	-	2	-	-	-	2	2	1	3	-	-
PO Target	1.75	-	1.75	-	2	-	-	-	2	2	1	3	-	-

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Python for Engineers	Course Code: AI102B	Faculty: Dr. Snigdha Chaturvedi

Tagging COs with BLs & KCs										
CO No.	Statement of Course Outcome	Bloom's Cognitive Process	Knowledge Category							
After	completion of the course, the student will be able to	Level (BL)	(KC)							
CO1	Use Python variables, operators, expressions, blocks, and numeric types to solve computational problems.	Apply	Procedural							
CO2	Apply Python conditional statements, loops, and loop control.	Apply	Procedural							
CO3	Use Python complex data types (strings, lists, tuples, dictionaries) and functions for efficient data manipulation and problem-solving.	Analyze	Procedural							
CO4	Apply Python file operations for reading, writing, manipulating files, and processing structured data efficiently.	Apply	Procedural							
CO5	Develop simple programs utilizing built-in functions of Python packages like Matplotlib, NumPy, and Pandas	Apply	Procedural							

Mappin	Mapping of Course outcomes with Program outcomes CO-POs Matrix													
POs	PO- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	3	3	2	-	3	-	I	-	I	-	-	3	3	2
CO2	3	3	2	-	3	-	-	-	2	2	-	3	3	2
CO3	3	3	3	2	3	-	-	-	2	2	-	3	3	2
CO4	3	3	2	2	3	-	-	2	2	2	-	3	3	2
CO5	3	3	2	2	3	-	-	2	2	3	-	3	3	3
PO Target	3	3	2.2	2	3	-	-	2	2	2.25	-	3	3	2.2

Ð

Program Name: B.Tech.	Academic Session: 2024-25	Semester: 2 nd Even Semester
Course Name: Innovation and Entrepreneurship	Course Code: ID104B	Faculty: Dr. S.K Tripathi

Tagg	ing COs with BLs & KCs						
CO No.	Statement of Course Outcome	Bloom's Cognitive Process					
After	completion of the course, the student will be able to	Level (BL)	(KC)				
CO1	Understand different types of innovation, innovative thinking and their role in solution of real-world challenges.	Understand	Conceptual				
CO2	Understand creative problem-solving skills and use the Business Model Canvas to shape viable business ideas.	Understand	Conceptual				
CO3	Analyze market research, identify target customers, and validate business ideas using data-driven insights.	Analyze	Procedural				
CO4	Understand pitch business ideas, integrate expert feedback, and pursue funding or mentorship opportunities	Understand	Conceptual				

Mapping of Course outcomes with Program outcomes CO-POs Matrix														
POs	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO- 2
CO1	-	-	-	-	-	2	2	-	2	-	2	2	-	-
CO2	-	-	-	-	-	2	2	-	2	-	2	2	-	-
CO3	-	-	-	-	-	2	2	-	2	-	2	2	-	-
CO4	-	-	-	-	-	2	2	-	2	-	2	2	-	-
PO Target	-	-	-	-	-	2	2	-	2	-	2	2	-	-

Ð

THE END

Dean (EEE)